Cospectral graphs for both the adjacency and normalized Laplacian matrices

نویسنده

  • Steve Butler
چکیده

In this note we show how to construct two distinct bipartite graphs which are cospectral for both the adjacency and normalized Laplacian matrices by “unfolding” a base bipartite graph in two different ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS

A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...

متن کامل

Enumeration of cospectral graphs

We have enumerated all graphs on at most 11 vertices and determined their spectra with respect to various matrices, such as the adjacency matrix and the Laplacian matrix. We have also counted the numbers for which there is at least one other graph with the same spectrum (a cospectral mate). In addition we consider a construction for pairs of cospectral graphs due to Godsil and McKay, which we c...

متن کامل

The Critical Groups of the Peisert Graphs

The critical group of a finite graph is an abelian group defined by the Smith normal form of the Laplacian. We determine the critical groups of the Peisert graphs, a certain family of strongly regular graphs similar to, but different from, the Paley graphs. It is further shown that the adjacency matrices of the two graphs defined over a field of order p2 with p ≡ 3 (mod 4) are similar over the ...

متن کامل

Constructing cospectral graphs for the normalized Laplacian

We give a method to construct cospectral graphs for the normalized Laplacian by swapping edges between vertices in some special graphs. We also give a method to construct an arbitrarily large family of (non-bipartite) graphs which are mutually cospectral for the normalized Laplacian matrix of a graph. AMS 2010 subject classification: 05C50

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008